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A new rearrangement of fused tetracyclic heterocycles
in an acidic medium in the presence of NaBH3CN
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Dedicated to Professor Karel Waisser on the occasion of his birthday
Abstract—In an acidic medium the criss-cross cycloadduct 2 with four fused five-membered rings rearranges to a heterocyclic com-
pound 3 with a completely different structure consisting of two six-membered and two five-membered rings. This newly discovered
rearrangement was observed in the presence of a reducing agent (NaBH3CN). The rearrangement proceeds easily and with an extre-
mely high yield.
� 2006 Elsevier Ltd. All rights reserved.
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Scheme 1. Intramolecular criss-cross cycloaddition.
1. Introduction

We have been investigating criss-cross cycloaddition
reactions for some time to evaluate the scope and limita-
tions of intramolecular criss-cross reactions based on the
applications of allenyl units.1,2

There are three types of criss-cross cycloaddition—inter-
molecular, intramolecular and combined intra–inter-
molecular cycloaddition reactions. Intermolecular
criss-cross cycloadditions are the most developed and in-
volve two sequential 1,3-dipolar cycloadditions in which
an unsaturated molecule reacts with a 1,3-dipole. In
1917, Bailey published a study of the reaction of benz-
aldazine with phenyl isocyanate.3 This type of reaction
was later named a criss-cross cycloaddition. Huisgen
predicted the success of criss-cross cycloaddition reac-
tions involving two 1,3-dipolar cycloadditions, in
1963.4 This prediction was confirmed by Burger in
1974 by the isolation of a stable intermediate from the
reaction of hexafluoracetonazine and 2-methylpropene.5

A combined intra–intermolecular criss-cross cyclo-
addition was firstly discovered in our laboratory.6 The
reaction is a combination of intra- and subsequent
intermolecular cycloadditions. In intramolecular criss-
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cross cycloaddition reactions, both dipolarophile (allen-
yl group) and azine group are part of one molecule 1.
Apparently, the distance between the azine group and
the multiple bonds determines whether a ‘lateral’ or
‘central’ type cyclization is preferred.1 In our case the
reaction affords a new type of compound 2 having four
centrally fused five-membered heterocyclic rings
(Scheme 1).
2. Results and discussion

Our starting compounds 2 for the transformation
reported here are the products of the thermally initi-
ated intramolecular criss-cross cycloaddition reaction of
homoallenylazines 11,2 prepared from homoallenyl alde-
hydes.7–10 Compounds 2 are interesting because of their
structure, chemical properties and rather easy method of
preparation in a high yield.
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Scheme 2. Rearrangements of compounds 2.

Figure 1. ORTEP representation of compound 3 0b structure.
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During our chemical investigation of products 2 we have
discovered a new interesting behaviour. In an acidic
medium, cycloadducts 2 rearrange to completely new
structures 3 with two six-membered and two five-mem-
bered rings (Scheme 2). This new rearrangement was
firstly detected in the presence of a reducing agent
(NaBH3CN). We suppose that the reaction begins in
the acidic medium with protonation at one of the nitro-
gen atoms. This leads to polarization of the N–N bond
and its splitting (Scheme 3). This would give a secondary
enamine and a positively charged carbon atom 7. After a
flip of the molecule, carbon atoms 2 and 7 can become
close and the formation of a new single bond between
these carbon atoms can proceed. In the last stage of
the reaction, NaBH3CN reduces the newly formed
C@N bonds.11

The course of the reaction was monitored by thin layer
chromatography and the products were analyzed by
NMR, IR, MS and elemental analysis. In the case of
compound 3 0b, single-crystal X-ray diffraction analysis
was also carried out12 (see Figs. 1 and 2).

Due to the cage like structure we expect that the rear-
ranged compounds 3 may serve as educts for various
complex formations.
Figure 2. Crystal packing of compound 3 0b. Part of the coplanar
planes oriented to F(101).
3. Experimental

3.1. General procedure for compounds 3 preparation

To the stirred solution of compound 2 (0.1 mmol) in dry
methanol (10 ml) a few drops of concentrated hydro-
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Scheme 3. The suggested mechanism of compounds 2 rearrangement in acid
chloric acid were added. Then, NaBH3CN (0.4 mmol)
was added and the mixture was stirred in an argon
atmosphere for 2 h. Finally, the solvent was evaporated.
After addition of water, the white precipitate was fil-
tered off and washed with water.13
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ic medium with a final reduction with NaBH3CN.
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3.2. 1,6-Diphenyl-2,2,7,7-tetramethyl-11,12-diazatetra-
cyclo[4.4.0.13,10.15,8]dodecane hydrochloride 3a

Compound 2a (0.10 g, 0.27 mmol) and NaBH3CN
(0.07 g, 1.1 mmol): white solid (ethanol/water = 1:4),
0.095 g (86%), mp 170–175 �C. 1H NMR (CDCl3):14 d
0.49 (s, 6H, CH3), 1.10 (s, 6H, CH3), 2.32 (dd,
J = 14.7 Hz, J = 3.0 Hz, 2H, CH2), 2.50 (dd, J =
14.7 Hz, J = 4.4 Hz, 2H, CH2), 3.07 (d, J = 3.0 Hz,
2H, CH), 4.49 (d, J = 4.4 Hz, 2H, CH), 7.11 (t, 2H,
Har), 7.35 (t, 4H, Har), 7.46 (d, 4H, Har) ppm. 13C
NMR (CDCl3):14 d = 22.6, 27.6, 33.4, 50.3, 57.3, 58.2,
65.0, 127.1, 130.1, 133.4, 142.9 ppm. IR (KBr): mmax

802, 1039, 1355, 1376, 1446, 1571, 2931, 2962, 3417
cm�1. MS (EI 30 eV): m/z (%) 373 (M+, 60), 302 (15),
259 (14), 185 (75), 172 (100), 155 (50), 127 (35), 114
(30), 91 (30), 41 (10). C26H33ClN2 (409.04): calcd: C,
76.35, H, 8.13, N, 6.85; found: C, 76.63, H, 8.22, N, 7.06.

3.3. 1,6-Di-(N-morpholinomethyl)-2,2,7,7-tetramethyl-
11,12-diazatetracyclo[4.4.0.13,10.15,8]dodecaneÆ3 HCl 3b

Compound 2b (0.70 g, 1.69 mmol) and NaBH3CN
(0.42 g, 6.75 mmol): white solid (chloroform), 0.73 g
(82%), mp 200–205 �C. 1H NMR (CDCl3):14 d 1.16 (s,
6H, CH3), 1.23 (s, 6H, CH3), 2.1–2.2 (m, 4H, CH2),
2.34 (d, J = 15.1 Hz, 2H, CH2), 2.4–2.5 (m, 8H, CH2),
2.57 (d, J = 15.1 Hz, 2H, CH2), 3.24 (t, J = 2.5 Hz,
2H, CH), 3.6–3.7 (m, 8H, CH2), 4.08 (t, J = 2.9 Hz,
2H, CH) ppm. 13C NMR (CDCl3):14 d = 22.0, 27.7,
31.1, 49.3, 53.6, 55.0, 56.0, 56.8, 62.9, 67.3 ppm. IR
(KBr): mmax 856, 902, 1039, 1116, 1319, 1400, 1454,
1546, 2327, 2805, 2923, 2956, 3338 cm�1. MS (EI
30 eV): m/z (%) 419 (M+, 3), 361 (5), 245 (100), 229
(18), 162 (20), 99 (63), 76 (11). C24H45Cl3N4O2

(528.00): calcd: C, 54.59, H, 8.59, N, 10.61; found: C,
55.01, H, 8.17, N, 10.19.

3.4. 1,6-Dibenzyl-2,2,7,7-tetramethyl-11,12-diazatetra-
cyclo[4.4.0.13,10.15,8]dodecaneÆ2 HCl 3c

Compound 2c (0.1 g, 0.25 mmol) and NaBH3CN
(0.064 g, 1 mmol): white solid (ethanol/water = 1:1),
0.092 g (77%), mp 280–300 �C. 1H NMR (CDCl3):14 d
0.95 (s, 6H, CH3), 1.45 (s, 6H, CH3), 2.17 (dd, 2H,
J = 15.1 Hz, J = 3.1 Hz, CH2), 2.35 (dd, J = 15.1 Hz,
J = 4.2 Hz, 2H, CH2), 2.95 (d, J = 15.9 Hz, 2H, CH2),
3.19 (d, J = 3.1 Hz, 2H, CH), 3.50 (d, J = 15.9 Hz,
2H, CH2), 4.07 (d, J = 4.2 Hz, 2H, CH), 7.2–7.3 (m,
10H, Har) ppm. 13C NMR (CDCl3):14 d = 22.7, 28.5,
30.9, 34.9, 50.6, 53.4, 55.9, 63.0, 127.0, 129.0, 130.8,
139.0 ppm. IR (KBr): mmax 703, 747, 1075, 1346, 1398,
1455, 1495, 1600, 2880, 2931, 3024, 3313 cm�1. MS
(CI): m/z (%) 401 (M++1, 2), 214 (30), 175 (11), 123
(14), 88 (89), 63 (40), 59 (100). C28H38Cl2N2 + H2O
(491.54): calcd: C, 68.42, H, 8.20, N, 5.70; found: C,
68.78, H, 8.16, N, 5.73.
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